Our recently published novel method to predict solid-state photoluminescence has discovered a possible bright transition in the positively charged nitrogen vacancy in diamond (NV+).
NV+ has historically been considered a dark state due to absence of experimental photoluminescence. Our work reveals that there is an optically active singlet-singlet transition approximately 16x less bright than the analogous triplet-triplet transition of the NV- charge state.
Our work in NV+ is a step towards unlocking applications such as quantum memory. We demonstrate that the lack of optical signature used for identification is not reliable and we subsequently provide predictions to guide experimental investigation. This will be useful for experimental work with NV defects in diamond as well as a motivation for further theoretical work investigating potential charge dependent quenching mechanisms.